Una mirada a las neurociencias: de las neuronas a la cognición
Palabras clave:
neurociencias, neuronas, cognición, cerebroSinopsis
La neuropsicología es una de las áreas de especialidad del psicólogo que más fuerza ha ganado en las últimas décadas. La contribución de las distintas ciencias a nuestra comprensión del cerebro, así como el desarrollo de técnicas e instrumentos cada vez más sofisticados para su estudio, han contribuido a su auge. Por esta razón, no es de sorprender que estos temas sean parte importante del pénsum que cursa todo psicólogo durante su formación básica.
En la práctica docente, a menudo el profesorado se enfrenta con el reto de transmitir a las y los estudiantes un gran cúmulo de conocimiento neurocientífico de manera articulada, sencilla y atractiva. En este sentido, la presente obra nace de la preocupación de quienes la coordinan por disponer de material amigable, actualizado y relevante para los estudiantes. Así, la obra fue diseñada con fines de enseñanza y pretende ser una herramienta útil para docentes y material de gran interés para los estudiosos de las neurociencias de distintos niveles.
Capítulos
-
Ciclo celular neuronal y neurogénesis
-
La glía: más que células de sostén
-
Modelos actuales de organización cerebral
-
El modelo animal como una herramienta útil para el estudio del estrés
-
Bases cerebrales y funcionales del procesamiento matemático
-
Memoria y funciones ejecutivas durante el desarrollo
-
Traumatismo craneoencefálico
-
Neuropsicología de las demencias
-
Evaluación neuropsicológica
-
Interacción de la conducta parental y el desarrollo de competencias cognitivas durante la infancia
-
Trastornos de la comunicación en el niño
Citas
--Ciclo celular neuronal y neurogénesis--
Abdissa, D., Hamba, N. & Gerbi, A. (2020). Review article on adult neurogenesis in humans. Translational Research in Anatomy, 20, 100074. https://doi.org/10.1016/j.tria.2020.100074
Barrio-Alonso, E., Hernández-Vivanco, A., Walton, C. C., Perea, G. & Frade, J.M. (2018). Cell cycle reentry triggers hyperploidization and synaptic dysfunction followed by delayed cell death in differentiated cortical neurons. Scientific Report, 8, 14316. https://doi.org/10.1038/s41598-018-32708-4
Cooper, G. (2019). The cell cycle. En The cell: a molecular approach (pp. 603-635). Oxford University Press.
Frade, J. M. & Ovejero-Benito, M. C. (2015). Neuronal cell cycle: the neuron itself and its circumstances. Cell Cycle, 14(5), 712-720. https://doi.org/10.1080/15384101.2015.1004937
Fricker, M., Tolkovsky, A. M., Borutaite, V., Coleman, M. & Brown, G. C. (2018). Neuronal cell death. Physiological reviews, 98(2), 813-880. https://doi.org/10.1152/physrev.00011.2017
Gage, F. H. (2019). Adult neurogenesis in mammals. Science, 364(6443), 827-828. https://doi.org/10.1126/science.aav6885
Herrup, K. & Yang, Y. (2007). Cell cycle regulation in the postmitotic neuron: oxymoron or new biology? Nat Rev Neurosci, 8(5), 368-378. https://doi.org/10.1038/nrn2124
Horgusluoglu, E., Nudelman, K., Nho, K. & Saykin, A. J. (2017). Adult neurogenesis and neurodegenerative diseases: a systems biology perspective. American Journal of Medical Genetics, 174(1), 93-112. https://doi.org/10.1002/ajmg.b.32429
Kase, Y., Shimazaki, T. & Okano, H. (2020). Current understanding of adult neurogenesis in the mammalian brain: how does adult neurogenesis decrease with age? Inflamm Regener 40, 10. https://doi.org/10.1186/s41232-020-00122-x
Kruman, I. I. (2004). Why do neurons enter the cell cycle? Cell Cycle, 3(6), 769-773.
Kumar, A., Pareek, V., Faiq, M. A., Ghosh, S. K. & Kumari, C. (2019). Adult neurogenesis in humans: a review of basic concepts, history, current research, and clinical implications. Innovations in Clinical Neuroscience, 16(5-6), 30-37.
Nagy, Z. (2007). The last neuronal division: a unifying hypothesis for the pathogenesis of Alzheimer’s disease. Journal of Cellular and Molecular Medicine, 9(3), 531-541. https://doi.org/10.1111/j.1582-4934.2005.tb00485.x
Navarro-Quiroz, E., Navarro-Quiroz, R., España-Puccini, P., Ahmad, M., Díaz-Pérez, A., Villarreal, J. L., Vásquez, L. & Torres, A. (2018). Neurogénesis en cerebro adulto. Salud Uninorte, 34(1), 144-159. http://dx.doi.org/10.14482/sun.34.1.9992
Nottebohm, F. (1981). A brain for all seasons: cyclical anatomical changes in song control nuclei of the canary brain. Science, 214(4527), 1368-1370. https://doi.org/10.1126/science.7313697
Oyarce, K., Bongarzone, E. R. & Nualart, F. (2014). Unconventional neurogenic niches and neurogenesis modulation by vitamins. Journal of Stem Cell Research & Therapy, 4(3), 184. https://doi.org/10.4172/2157-7633.1000184
Pucci, B., Kasten, M. & Giordano, A. (2000). Cell cycle and apoptosis. Neoplasia, 2(4), 291-299. https://doi.org/10.1038/sj.neo.7900101
Ramírez-Rodríguez, G., Benítez-King, G. & Kempermann, G. (2007). Formación de neuronas nuevas en el hipocampo adulto: neurogénesis. Salud Mental, 30(3), 12-19. Recuperado de https://www.researchgate.net/publication/28229959_Formacion_de_neuronas_nuevas_en_el_hipocampo_adulto_neurogenesis
Roa-Rojas, P. A., Martínez-Ruiz, A. & García-Peña, M. C. (2017). Marco conceptual. En L. M. Gutiérrez-Robledo, M. C. García-Peña, P. A. Roa-Rojas y A. Martínez-Ruiz (edits.), La enfermedad de Alzheimer y otras demencias como problema nacional de salud (pp. 1-17). Intersistemas.
Rodríguez-Fragoso, L., Hernández-Baltasar, E. & Reyes-Esparza, J. A. (2004). El ciclo celular: características, regulación e importancia en el cáncer. Biotecnología Aplicada, 21(2), 60-69. Recuperado de https://elfosscientiae.cigb.edu.cu/PDFs/Biotecnol%20Apl/2004/21/2/BA002102RV060-069.pdf
Rodríguez-Gómez, A. J. & Frías-Vázquez, S. (2014). La mitosis y su regulación. Acta Pediátrica de México, 35(1), 55-68. Recuperado de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S018623912014000100009&lng=es&tlng=es
Ruan, L., Lau, B. W., Wang, J., Huang, L., Zhuge, Q., Wang, B., Jin, K. & So, K. F. (2014). Neurogenesis in neurological and psychiatric diseases and brain injury: from bench to bedside. Progress in Neurobiology, 115, 116-137. https://doi.org/10.1016/j.pneurobio.2013.12.006
Sierra, A., Martín-Suárez, S., Valcárcel-Martin, R., Pascual-Brazo, J., Aelvoet, S. A., Abiega, O., Deudero, J. J., Brewster, A. L., Bernales, I., Anderson, A. E., Baekelandt, V., Maletić-Savatić, M. & Encinas, J. M. (2015). Neuronal hyperactivity accelerates depletion of neural stem cells and impairs hippocampal neurogenesis. Cell Stem Cell, 16, 488-503. https://doi.org/10.1016/j.stem.2015.04.003
Stolp, H. B. & Molnár, Z. (2015). Neurogenic niches in the brain: help and hindrance of the barrier systems. Frontiers in Neuroscience, 9, 20. https://doi.org/10.3389/fnins.2015.00020
The Rockefeller University (s. f.). Discovering nerve cell replacement in the brains of adult birds. Recuperado de http://centennial.rucares.org/index.php?page=Brain_Generates_Neurons
Urbach, A. & Witte, O. W. (2019). Divide or commit - revisiting the role of cell cycle regulators in adult hippocampal neurogenesis. Frontiers in cell and developmental biology, 7, 55. https://doi.org/10.3389/fcell.2019.00055
Vicini, S. (2008). The role of GABA and glutamate on adult neurogenesis. The Journal of Physiology, 586(16), 3737-3738. https://doi.org/10.1113/jphysiol.2008.159046
Winner, B. & Winkler, J. (2015). Adult neurogenesis in neurodegenerative diseases. Cold Spring Harbor perspectives in biology, 7(4), a021287. https://doi.org/10.1101/cshperspect.a021287
Yao, G. (2014). Modelling mammalian cellular quiescence. Interface Focus, 4(3), 20130074. https://doi.org/10.1098/rsfs.2013.0074
Zhao, M., Momma, S., Delfani, K., Carlén, M., Cassidy, R. M., Johansson, C. B., Brismar, H., Shupliakov, O., Frisen, J. & Janson, A. M. (2003). Evidence for neurogenesis in the adult mammalian substantia nigra. Proceeding of the National Academy of Sciences of de USA, 100(13), 79257930. https://doi.org/10.1073/pnas.1131955100
--La glía: más que células de sostén--
Acosta, C., Anderson, H. D. & Anderson, C. M. (2017). Astrocyte dysfunction in Alzheimer disease. Journal of Neuroscience Research, 95(12), 2430-2447. https://doi.org/10.1002/jnr.24075
Allen, N. J. & Barres, B. A. (2009). Glia-more than just brain glue. Nature, 457(7230), 675-677. https://doi.org/10.1038/457675a
Altman, J. & Das, G. D. (1965). Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. Journal of Comparative Neurology, 124(3), 319-335. https://doi.org/10.1002/cne.901240303
Álvarez-Buylla, A., Theelen, M. & Nottebohm, F. (1990). Proliferation “hot spots” in adult avian ventricular zone reveal radial cell division. Neuron, 5(1), 101-109. https://doi.org/10.1016/0896-6273(90)90038-H
Álvarez-Buylla, A., García-Verdugo, J. M. & Tramontin, A. D. (2001). A unified hypothesis on the lineage of neural stem cells. Nature Reviews Neuroscience, 2, 287-293. https://doi.org/10.1038/35067582
Anthony, T. E., Klein, C., Fishell, G. & Heintz, N. (2004). Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron, 41, 881-890. https://doi.org/10.1016/S0896-6273(04)00140-0
Araque, A., Li, N., Doyle, R. T. & Haydon, P. G. (2000). SNARE protein-dependent glutamate release from astrocytes. Journal of Neuroscience, 20(2), 666-673. https://doi.org/10.1523/JNEUROSCI.20-02-00666.2000
Araque, A., Parpura, V., Sanzgiri, R. P. & Haydon, P. G. (1999). Tripartite synapses: glia, the unacknowledged partner. Trends in Neuroscience, 22(5), 208-215. https://doi.org/10.1016/S0166-2236(98)01349-6
Arias-Carrión, O., Olivares-Buñuelos, T. & Drucker-Colín, R. (2007). Neurogénesis en el cerebro adulto. Revista de Neurología, 44, 541-550.
Auld, D. S. & Robitaille, R. (2003). Glial cells and neurotransmission: an inclusive view of synaptic function. Neuron, 40(2), 389-400. https://doi.org/10.1016/S0896-6273(03)00607-X
Bentivoglio, M. & Mazzarello, P. (1999). The history of radial glia. Brain Research Bulletin, 49(5), 305-315. https://doi.org/10.1016/S0361-9230(99)00065-9
Bezzi, P., Gundersen, V., Galbete, J. L., Seifert, G., Steinhäusen, C., Pilati, E. & Volterra, A. (2004). Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nature Neuroscience, 7, 613-620. https://doi.org/10.1038/nn1246
Boddeke, E. W., Meigel, I., Frentzel, S., Gourmala, N. G., Harrison, J. K., Buttini, M., Spleiss, O. & Gebicke-Harter, P. (1999). Cultured rat microglia express functional beta-chemokine receptors. Journal of Neuroimmunology, 98(2), 176-184. https://doi.org/10.1016/S0165-5728(99)00096-X
Boucsein, C., Zacharias, R., Färber, K., Pavlovic, S., Hanisch, U. K. & Kettenmann, H. (2003). Purinergic receptors on microglial cells: functional expression in acute brain slices and modulation of microglial activation in vitro. European Journal of Neuroscience, 17(11), 2267-2276.
Bray, G. M., Rasminsky, M. & Aguayo, A. J. (1981). Interactions between axons and their sheath cells. Annual Review of Neuroscience, 4, 127-162. https://doi.org/10.1146/annurev.ne.04.030181.001015
Brodal, P. (2004). The central nervous system: structure and function (3ª ed.). Oxford University Press.
Campbell, K. & Götz, M. (2002). Radial glia: multi-purpose cells for vertebrate brain development. Trends in Neuroscience, 25(5), 235-238. https://doi.org/10.1016/S0166-2236(02)02156-2
Carleton, A., Petreanu, L. T., Lansford, R., Álvarez-Buylla, A. & Lledo, P. M. (2003). Becoming a new neuron in the adult olfactory bulb. Nature Neuroscience, 6, 507-518. https://doi.org/10.1038/nn1048
Choi, B. H. (1981). Radial glia of developing human fetal spinal cord: Golgi, immunohistochemical and electron microscopic study. Developmental Brain Research, 1(2), 249-267. https://doi.org/10.1016/0165-3806(81)90112-7
Cornell-Bell, A. H. & Finkbeiner, S. M. (1991). Ca2+ waves in astrocytes. Cell Calcium 12(2-3), 185-204. https://doi.org/10.1016/0143-4160(91)90020-F
Cornell-Bell, A. H., Finkbeiner, S. M., Cooper, M. S. & Smith, S. J. (1990). Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science, 247(4941), 470-473. https://doi.org/10.1126/science.1967852
Cotrina, M. L., Lin, J. H. C., Alves-Rodrigues, A., Liu, S., Li, J., Azmi-Ghadimi, H., Kang, J., Naus, C. C. G. & Nedergaard, M. (1998). Connexins regulate calcium signaling by controlling ATP release. Proceedings of the National Academy of Science of the United States of America, 95(26), 15735-15740. https://doi.org/10.1073/pnas.95.26.15735
Del-Rio-Hortega, P. (1932). Cytology and Cellular Pathology of the Nervous System. Hoeber.
DeVries, G. H., Zetusky, W. J., Zmachinsli, C. & Calabrese, V. P. (1981). Lipid composition of axolemma-enriched fractions from human brains. Journal of Lipid Research, 22, 208-216.
Díaz-Aparicio, I., Beccari, S., Abiega, O. & Sierra, A. (2016). Clearing the corpses: regulatory mechanisms, novel tools, and therapeutic potential of harnessing microglial phagocytosis in the diseased brain. Neural Regeneration Research 11(10), 1533-1539. https://doi.org/10.4103/1673-5374.193220
Dickson, D. W., Lee, S. C., Mattiace, L. A., Yen, S. H. & Brosnan, C. (1993). Microglia and cytokines in neurological disease, with special– reference to AIDS and Alzheimer’s disease. Glia 7(1), 75-83. https://doi.org/10.1002/glia.440070113
Doetsch, F., Caillé, I., Lim, D. A., García-Verdugo, J. M. & Álvarez-Buylla, A. (1999). Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell, 97(6), 703-716. https://doi.org/10.1016/S0092-8674(00)80783-7
Dong, Y. & Benveniste, E. N. (2001) Immune function of astrocytes. Glia, 36(2), 180-190. https://doi.org/10.1002/glia.1107
Duffy, S. & MacVicar, B. A. (1995). Adrenergic calcium signaling in astrocyte networks within the hippocampal slice. Journal of Neuroscience, 15(8), 5535-5550. https://doi.org/10.1523/JNEUROSCI.15-08-05535.1995
Dugandzija-Novakovic, S., Koszowski, A. G., Levinson, S.R. & Shrager, P. (1995). Clustering of Na+ channels and node of Ranvier formation in remyelinating axons. Journal of Neuroscience, 15(1), 492-503. https://doi.org/10.1523/JNEUROSCI.15-01-00492.1995
Eriksson, P.S., Perfilieva, E., Björk-Eriksson, T., Alborn, A. M., Nordborg, C., Peterson, D. A. & Gage, F. H. (1998). Neurogenesis in the adult human hippocampus. Nature Medicine, 4, 1313-1317. https://doi.org/10.1038/3305
Evanko, D. S., Zhang, Q., Zorec, R. & Hydon, P. (2004). Defining pathways of loss and secretion of chemical messengers from astrocytes. Glia, 47, 233-240. https://doi.org/10.1002/glia.20050
Färber, K. & Kettenmann, H. (2005). Physiology of microglial cells. Brain Research Reviews, 48, 133-143. https://doi.org/10.1016/j.brainresrev.2004.12.003
Fawcett, J. W. & Keynes, R. J. (1990). Peripheral nerve regeneration. Annual Review of Neuroscience, 13, 43-60. https://doi.org/10.1146/annurev.ne.13.030190.000355
Feng, L., Hatten, M. E. & Heintz, N. (1994). Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS. Neuron 12(4), 895-908. https://doi.org/10.1016/0896-6273(94)90341-7
Fernandez-Valle, C., Bunge, R. P. & Bunge, M. B. (1995). Schwann cells degrade myelin and proliferate in the absence of macrophages: evidence from in vitro studies of Wallerian degeneration. Journal of Neurocytology, 24, 667-679. https://doi.org/10.1007/BF01179817
Fields, R.D. & Stevens-Graham, B. (2002). New insights into neuron-glia communication. Science, 298, 556-562. https://doi.org/10.1126/science.298.5593.556
Finkbeiner, S. (1992). Calcium waves in astrocytes-filling in the gaps. Neuron 8, 1101-1108. https://doi.org/10.1016/0896-6273(92)90131-V
Frostick, S. P., Yin, Q. & Kemp, G. J. (1998). Schwann cells, neurotrophic factors, and peripheral nerve regeneration. Microsurgery, 18(7), 397-405. https://doi.org/10.1002/(SICI)1098-2752(1998)18:7<397::AID-MICR2>3.0.CO;2-F
Gage, F. H. (2000). Mammalian neural stem cells. Science, 287, 1433-1438. https://doi.org/10.1126/science.287.5457.1433
Gal, B., López, M., Martín, A. I. & Prieto, J. (2007). Bases de la fisiología (2ª ed.). Tébar.
Gallo, V. & Chittajallu, R. (2001). Unwrapping glial cells from the synapse: what lies inside? Science, 292(5518), 872-873. https://doi.org/10.1126/science.1060854
Giaume, C. & Venance, L. (1998). Intercellular calcium signaling and gap junctional communication in astrocytes. Glia, 24, 50-64. https://doi.org/10.1002/(SICI)1098-1136(199809)24:1<50::AID-GLIA6>3.0.CO;2-4
Giulian, D. (1987). Ameboid microglia as effectors of inflammation in the central nervous system. Journal of Neuroscience Research, 18, 155-171. https://doi.org/10.1002/jnr.490180123
Giulian, D. & Baker, T. J. (1986). Characterization of ameboid microglia isolated from developing mammalian brain. Journal of Neuroscience, 6, 2163-2178. https://doi.org/10.1523/JNEUROSCI.06-08-02163.1986
Gosselin, R. D., Suter, M. R., Ji, R. R. & Decosterd, I. (2010). Glial cells and chronic pain. The Neuroscientist, 16, 519-531. https://doi.org/10.1177/1073858409360822
Gould, E., Reeves, A. J., Graziano, M. S. & Gross, C. G. (1999). Neurogenesis in the neocortex of adult primates. Science, 286, 548-552. https://doi.org/10.1177/1073858409360822
Grosche, J., Matyash, V., Möller, T., Verkhratsky, A., Reichenbach, A. & Kettenmann, H. (1999). Microdomains for neuron-glia interaction: parallel fiber signaling to Bergmann glial cells. Nature Neuroscience, 2(2), 139-143. https://doi.org/10.1038/5692
Grove, E. A., Williams, B. P., Li, D. Q., Hajihosseini, M., Friedrich, A. & Price, J. (1993). Multiple restricted lineages in the embryonic rat cerebral cortex. Development, 117, 553-561.
Guthrie, P. B., Knappenberger, J., Segal, M., Bennett, M. V., Charles, A. C. & Kater, S. B. (1999). ATP released from astrocytes mediates glial calcium waves. Journal of Neuroscience, 19(2), 520-528. https://doi.org/10.1523/JNEUROSCI.19-02-00520.1999
Haass, C. & Selkoe, D. J. (1993). Cellular processing of β-amyloid precursor protein and the genesis of amyloid β-peptide. Cell, 75(6), 1039-1042. https://doi.org/10.1016/0092-8674(93)90312-E
Hanashima, C., Li, S.C., Shen, L., Lai, E. & Fishell, G. (2004). Foxg1 Supresses early cortical cell fate. Science, 303(5654), 56-59. https://doi.org/10.1126/science.1090674
Hartfuss, E., Galli, R., Heins, N. & Götz, M. (2001). Characterization of CNS precursor subtypes and radial glia. Developmental biology, 229(1), 15-30. https://doi.org/10.1006/dbio.2000.9962
Hatten, M. E. (2002). New directions in neuronal migration. Science, 297(5587), 1660-1663. https://doi.org/10.1126/science.1074572
Haydon, P. G. (2001). Glia: Listening and talking to the synapse. Nature Reviews Neuroscience, 2, 185-193. https://doi.org/10.1038/35058528
Horrocks, L. A. (1967). Composition of myelin from peripheral and central nervous systems of the sqirrel monkey. Journal of Lipid Research, 8, 569-576. https://doi.org/10.1016/S0022-2275(20)38877-5
Jessen, K. R. & Mirsky, R. (1999). Schwann cells and their precursors emerge as major regulators of nerve development. Trends in Neuroscience, 22, 402-410. https://doi.org/10.1016/S0166-2236(98)01391-5
Jessen, K. R. & Mirsky, R. (2005). The original and development of glial cells in peripheral nerves. Nature Reviews Neuroscience, 6(9), 671-682. https://doi.org/10.1038/nrn1746
Jessen, K. R. & Richardson, W. D. (2001). Glial cell development: basic principles and clinical relevance (2ª ed.). Oxford: Oxford University Press.
Jessen, K. R. (2004). Cells in focus: Glial cells. The International Journal of Biochemistry & Cell Biology, 26, 1861-1867. https://doi.org/10.1016/j.biocel.2004.02.023
Kang, J., Jiang, L., Goldman, S. A. & Nedergaard, M. (1998). Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nature Neuroscience, 1, 683-692. https://doi.org/10.1038/3684
Kulik, A., Haentzsch, A., Luckermann, M., Reichelt, W. & Ballanyi, K. (1999). Neuron-glia signaling via α1 adrenoceptormediated Ca2+ release in Bergmann glial cells in situ. Journal of Neuroscience, 19, 8401-8488. https://doi.org/10.1523/JNEUROSCI.19-19-08401.1999
Kuhn, A., van Landeghem, F. K., Zacharias, R., Färber, K., Rappert, A., Pavlovic, S., Hoffmann, A., Nolte, C. & Kettenmann, H. (2004). Microglia express GABAB receptors to modulate interleukin release. Molecular and Cellular Neuroscience, 25(2), 312-322. https://doi.org/10.1016/j.mcn.2003.10.023
Levitt, P. & Rakic, P. (1980). Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. Journal of Comparative Neurology, 193(3), 815-840. https://doi.org/10.1002/cne.901930316
Lev-Ram, V. & Ellisman, M. H. (1995). Axonal activation-induced calcium transients in myelinating Schwann cells, sources, and mechanisms. Journal of Neuroscience, 15, 2628-2637. https://doi.org/10.1523/JNEUROSCI.15-04-02628.1995
Linington, C., Waehneldt, T. V. & Neuhoff, V. (1980). The lipid composition of light and heavy myelin subfractions isolated from rabbit sciatic nerve. Neuroscience Letters, 20, 211-215. https://doi.org/10.1016/0304-3940(80)90148-2
Lois, C. & Álvarez-Buylla, A. (1993). Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proceedings of the National Academy of Science of the United States of America, 90, 2074-2077. https://doi.org/10.1073/pnas.90.5.2074
Malatesta, P., Hack, M.A., Hartfuss, E., Kettenmann, H., Klinkert, W., Kirchhoff, F., & Götz, M. (2003). Neuronal or glial progeny: regional differences in radial glia fate. Neuron, 37, 751-764. https://doi.org/10.1016/S0896-6273(03)00116-8
Malatesta, P., Hartfuss, E. & Götz, M. (2000). Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development, 127, 5253-5263.
Marin, O. & Rubenstein, J. L. (2001). A long, remarkable journey: tangential migration in the telencephalon. Nature Reviews of Neuroscience, 2, 780-790. https://doi.org/10.1038/35097509
Martínez-Gómez, A. (2014a). Comunicación entre células gliales y neuronas I. Astrocitos, células de Schwann que no forman mielina y células de Schwann perisinápticas. Revista de Medicina e Investigación, 2(2), 75-84. http://hdl.handle.net/20.500.11799/49598
Martínez-Gómez, A. (2014b). Comunicación entre células gliales y neuronas II. Células gliales que forman mielina. Revista de Medicina e Investigación, 2(2), 85-93. http://hdl.handle.net/20.500.11799/49599
Merkle, F. T., Tramontin, A. D., García-Verdugo, J. M. & Álvarez-Buylla, A. (2004). Radial glia give rise to adult neural stem cells in the subventricular zone. Proceedings of the National Academy of Science, 101(50), 17528-17532. https://doi.org/10.1073/pnas.0407893101
Mission, J. P., Austin, C. P., Takahashi, T., Cepko, C. L. & Caviness Jr., V. S. (1991). The alignment of migrating neural cells in relation to the murine neopallial radial glial fiber system. Cerebral Cortex, 1(3), 221-229. https://doi.org/10.1093/cercor/1.3.221
Morshead, C. M., Reynolds, B. A., Craig, C. G., McBurney, M. W., Staines, W. A, Morassutti, D., Weiss, S. & van der Kooy, D. (1994) Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron, 13, 1071-1082. https://doi.org/10.1016/0896-6273(94)90046-9
Morshead, C. M. & Van der Kooy, D. (1992). Postmitotic death is the fate of constitutively proliferating cells in the subependimal layer of the adult mouse brain. Journal of Neuroscience, 12, 249-256. https://doi.org/10.1523/JNEUROSCI.12-01-00249.1992
Nadarajah, B. & Parnavelas, J. G. (2002). Modes of neuronal migration in the developing cerebral cortex. Nature Reviews Neuroscience, 3(6), 423-432.
Nakajima, K. & Kohsaka, S. (2004). Response of microglia to brain injury. En H. Kettenmann, B. R. Ransom (edits.), Neuroglia (p. 443). Oxford University Press.
Nave, K. A. & Schwab, K. A. (2005). Glial cells under remote control. Nature Neuroscience, 8, 1420-1422. https://doi.org/10.1038/nn1105-1420
Newman, E. A. (2003). New roles for astrocytes: regulation of synaptic transmission. Trends in Neuroscience, 26(10), 536-542. https://doi.org/10.1016/S0166-2236(03)00237-6
Noda, M., Nakanishi, H., Nabekura, J. & Akaike, N. (2000). AMPA-kainate subtypes of glutamate receptor in rat cerebral microglia. Journal of Neuroscience, 20, 251-258. https://doi.org/10.1523/JNEUROSCI.20-01-00251.2000
Noctor, S. C., Flint, A. C., Weissman, T. A., Wong, W. S., Clinton, B. K. & Kriegstein, A. R. (2002). Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. Journal of Neuroscience, 22, 3161-3173. https://doi.org/10.1523/JNEUROSCI.22-08-03161.2002
Oliet, S. H., Piet, R. & Poulain, D. A. (2001). Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science, 292(5518), 923-926. https://doi.org/10.1126/science.1059162
Orkand, R. K., Nicholls, J. G. & Kuffler, S. W. (1966). Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. Journal of Neurophysiology, 29, 788-806. https://doi.org/10.1152/jn.1966.29.4.788
Paresce, D. M., Ghosh, R. N. & Maxfield, F. R. (1996). Microglial cells internalize aggregates of the Alzheimer´s disease amyoid β-protein via a scavenger receptor. Neuron, 17(3), 553-565. https://doi.org/10.1016/S0896-6273(00)80187-7
Pinel, J. P. J. (2007). Biopsicología (6ª ed.). Pearson-Addison Weasley.
Poliak, S. & Peles, E. (2003). The local differentiation of myelinated axons at nodes of Ranvier. Nature Reviews of Neuroscience, 4, 968-980. https://doi.org/10.1038/nrn1253
Prinz, M., Häusler, K.G. Kettenmann, H. & Hanisch, U. (2001). Beta-adrenergic receptor stimulation selectively inhibits IL-12p40 release in microglia. Brain Research, 899, 264-270. https://doi.org/10.1016/S0006-8993(01)02174-6
Price, J. & Williams, B. P. (2001). Neural stem cells. Current Opinion in Neurobiology, 11, 564-567. https://doi.org/10.1016/S0959-4388(00)00250-6
Pyka, M., Wetzel, C., Aguado, A., Geissler, M., Hatt, H. & Faissner, A. (2011). Chondroitin sulfate proteoglycans regulate astrocyte-dependent synaptogenesis and modulate synaptic activity in primary embryonic hippocampal neurons. European Journal of Neuroscience, 33(12), 2187-2202. https://doi.org/10.1111/j.1460-9568.2011.07690.x
Rakic, P. (1971a). Guidance of neurons migrating to the fetal monkey neocortex. Brain Research, 33, 471-476. https://doi.org/10.1016/0006-8993(71)90119-3
Rakic, P. (1971b). Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus Rhesus. Journal of Comparative Neurology, 141, 283-312. https://doi.org/10.1002/cne.901410303
Rakic, P. (1972). Mode of cell migration to the superficial layers of fetal monkey neocortex. Journal of Comparative Neurology, 145, 61-84. https://doi.org/10.1002/cne.901450105
Rela, L. (2016). Células gliales ¿Servidoras de las neuronas o compañeras de equipo? Ciencia hoy: Sección temática, 25(151), 36-42.
Reyes-Haro, D., Bulavina, L. & Pivneva, T. (2014). La glía, el pegamento de las ideas. Ciencia, 12-18.
Reynolds, B.A. & Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 255, 1707-1710. https://doi.org/10.1126/science.1553558
Rouach, N. & Giaume, C. (2001). Connexins and gap junctional communication in astrocytes are targets for neuroglial interaction. Progress in Brain Research, 132, 203-214. https://doi.org/10.1016/S0079-6123(01)32077-0
Sauer, F. C. (1935). Mitosis in the neural tube. Journal of Comparative Neurology, 62, 377-405. https://doi.org/10.1002/cne.900620207
Scherer, S. S. & Salzer, J. L. (1996). Axon-Schwann cell interactions during peripheral nerve degeneration and regeneration. En K. R. Jessen y W. D. Richardson (edits.). Glial cell development, basic principles, and clinical relevance. Bios Scientific Publishers Limited.
Scherer, S. S. (1999). Nodes, paranodes, and incisures: from form to function. Annals of the New York Academy of Science, 883, 131-142. https://doi.org/10.1111/j.1749-6632.1999.tb08576.x
Schmechel, D. E. & Rakic, P. (1979) A Golgi study of radial glial cells in the developing monkey telencephalon: morphogenesis and transformation into astrocytes. Anatomy and Embryology, 156, 115-152. https://doi.org/10.1007/BF00300010
Schwab, M. E. & Schnell, L. (1989). Region-specific appearance of myelin constituents in the developing rat spinal cord. Journal of Neurocytology, 18, 161-169. https://doi.org/10.1007/BF01206659
Shelton, M. K. & McCarthy, K. D. (2000). Hippocampal astrocytes exhibit Ca2+-elevating muscarinic cholinergic and histaminergic receptors in situ. Journal of Neurochemistry, 74, 555-563. https://doi.org/10.1046/j.1471-4159.2000.740555.x
Sidman, R. L. & Rakic, P. (1973). Neuronal migration, with special reference to developing human brain: a review. Brain Research, 62, 1-35. https://doi.org/10.1016/0006-8993(73)90617-3
Smith, S. J. (1992). Do astrocytes process neural information? Progress in Brain Research, 94, 119-136. https://doi.org/10.1016/S0079-6123(08)61744-6
Steit, W. J. (2004). Microglial cells. En H. Kettenmann y B. R. Ransom (edits.), Neuroglia (p. 60). Oxford University Press.
Stevens, B. & Fields, R. D. (2000). Response of Schwann cells to action potentials in development. Science, 287, 2267-2271. https://doi.org/10.1126/science.287.5461.2267
Talaverón, R. & Morado-Díaz, C. J. (2019). La glía, las otras células del sistema nervioso. Elementos, 115, 39-44.
Tamamaki, N., Nakamura, K., Okamoto, K. & Kaneko, T. (2001). Radial glia is a progenitor of neocortical neurons in the developing cerebral cortex. Neuroscience Research, 41, 51-60. https://doi.org/10.1016/S0168-0102(01)00259-0
Trapp, B. D. & Kidd, G. J. (2000). Axo-glial septate junctions. The maestro of nodal formation and myelination? Journal of Cellular Biology, 150, F97-F100. https://doi.org/10.1083/jcb.150.3.F97
Ventura, R. & Harris, K. M. (1999). Three-dimensional relationships between hippocampal synapses and astrocytes. Journal of Neuroscience, 19, 6897-6906. https://doi.org/10.1523/JNEUROSCI.19-16-06897.1999
Verkhratsky, A. & Butt, A. (2007). Glial Neurobiology. A Textbook. John Wiley & Sons Ltd.
Vescovi, A., Gritti, A., Cossu, G. & Galli, R. (2002). Neural stem cells: plasticity and their transdifferentiation potential. Cells Tissues Organs, 171, 64-76. https://doi.org/10.1159/000057692
Voigt, T. (1989) Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes. Journal of Comparative Neurology, 289, 74-88. https://doi.org/10.1002/cne.902890106
Wang, Z., Haydon, P. G. & Yeung, E. S. (2000). Direct observation of calcium-independent intercellular ATP signaling in astrocytes. Analytical Chemistry, 72, 2001-2007. https://doi.org/10.1021/ac9912146
Waxman, S. G. (1997). Axon-glia interactions: building a smart nerve fiber. Current Biology, 7, R406-410. https://doi.org/10.1016/S0960-9822(06)00203-X
--Modelos actuales de organización cerebral--
Anokhin, P. K. (1980). Problemas claves de la teoría del sistema funcional. Ciencia.
Ardila, A. & Rosselli, M. (2007). Neuropsicología clínica. Manual Moderno.
Beckmann, C. F., DeLuca, M., Devlin, J. T. & Smith, S. M. (2005). Investigations into resting-state connectivity using independent component analysis. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 360(1457), 1001-1013. https://doi.org/10.1098/rstb.2005.1634
Biswal, B., Van Kylen, J. & Hyde, J. S. (1997). Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps. NMR in biomedicine. 10 (4–5), 165–170. https://doi.org/10.1002/(sici)1099-1492(199706/08)10:4/5<165::aid-nbm454>3.0.co;2-7
Biswal, B., Yetkin, F. Z., Haughton, V. M. & Hyde, J. S. (1995). Functional connectivity in the motor córtex of resting human brain using echo-planar MRI. Magnetic resonance in medicine, 34 (4), 537-541. https://doi.org/10.1002/mrm.1910340409
Brain Initiative (2013). Brain Research through Advancing Innovative Technologies.Recuperado de http://brain initiative.nih.gov
Broca, P. (1861). Remarks on the Seat of the Faculty of Articulated Language, Following an Observation of Aphemia (Loss of Speech). Bulletin de la Société Anatomique, 6, 330-357.
Broca, P. (1863). Localisations des fonctions cérébrales. Siège de la faculté du langage articulé. Bulletin de la Société d’Anthropologie, 4, 200-208. Brodmann’s Interactive Atlas. Recuperado de http://www.fmriconsulting.com/brodmann/Introduction.html
Cabrales-Paffen, A. (2015). Neuropsicología y la localización de las funciones cerebrales superiores en estudios de resonancia magnética funcional con tareas. Acta Neuropsicológica Colombiana, 31(1), 92-100. https://doi.org/10.22379/2422402214
Cabrera, L. Y., Evans, E. L. & Hamilton, R. H. (2014). Ethics of the electrified mind: defining issues and perspectives on the principled use of brain stimulation in medical research and clinical care. Brain topography, 27(1), 33-45.
Churchland, P. S. & Sejnowski, T. J. (1992). The Computational Brain. MIT Press.
Collinger, J. L., Wodlinger, B., Downey, J. E., Wang, W., Tyler-Kabara, E. C., Weber, D. J., ... & Schwartz, A. B. (2013). High-performance neuroprosthetic control by an individual with tetraplegia. The Lancet, 381(9866), 557-564.
Cordes, D., Haughton, V., Carew, J. D., Arfanakis, K. & Maravilla, K. (2002). Hierarchical clustering to measure connectivity in fMRI resting-state data. Magnetic resonance imaging, 20(4), 305-317. https://doi.org/10.1016/s0730-725x(02)00503-9
Damoiseaux, J. S., Rombouts, S. A., Barkhof, F., Scheltens, P., Stam, C. J., Smith, S. M. & Beckmann, C. F. (2006). Consistent resting- state networks across healthy subjects. Proceedings of the National Academy of Sciences of the United States of America, 103(37), 13848-13853. https://doi.org/10.1073/pnas.0601417103
De Luca, M., Smith, S., De Stefano, N., Federico, A. & Matthews, P. M. (2005). Blood oxygenation level dependent contrast resting state networks are relevant to functional activity in the neocortical sensorimotor system. Experimental brain research, 167(4), 587-594. https://doi.org/10.1007/s00221-005-0059-1
Deco, G. & Kringelbach, M. L. (2014). Great expectations: using whole-brain computational connectomics for understanding neuropsychiatric disorders. Neuron, 84(5), 892-905. https://doi.org/10.1016/j.neuron.2014.08.034
Deng, Z. D., McClintock, S. M., Oey, N. E., Luber, B. & Lisanby, S. H. (2015). Neuromodulation for mood and memory: from the engineering bench to the patient bedside. Current opinion in neurobiology, 30, 38-43.
Farras-Permanyer, L., Mancho-Fora, N., Montalà-Flaquer, M., Bartrés-Faz, D., Vaqué-Alcázar, L., Peró-Cebollero, M. & Guàrdia-Olmos, J. (2019). Age-related changes in resting-state functional connectivity in older adults. Neural regeneration research, 14(9), 1544-1555. https://doi.org/10.4103/1673-5374.255976
Feng, H., Fawaz, K. & Shin, K. G. (2017). Continuous authentication for voice assistants. En Proceedings of the 23rd Annual International Conference on Mobile Computing and Networking (pp. 343-355).
Figueroa-Jimenez, M. D. (2020). Conectividad funcional estática y efectiva dinámica en personas con síndrome de Down en relación con el rendimiento cognitivo. [Tesis doctoral no publicada]. Universitat de Barcelona.
Figueroa-Jimenez, M. D., Cañete-Massé, C., Carbó-Carreté, M., Zarabozo-Hurtado, D., Peró-Cebollero, M., Salazar-Estrada, J. G. & Guàrdia-Olmos, J. (2020). Resting-state default mode network connectivity in young individuals with Down syndrome. Brain and Behavior, n/a(n/a), e01905. https://doi.org/10.1002/brb3.1905
Fins, J. J. (2003). From psychosurgery to neuromodulation and palliation: history’s lessons for the ethical conduct and regulation of neuropsychiatric research. Neurosurgery Clinics, 14(2), 303-319.
Fox, M. D. & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature reviews. Neuroscience, 8(9), 700-711. https://doi.org/10.1038/nrn2201
Friston, K. J., Frith, C. D., Liddle, P. F. & Frackowiak, R. S. (1993). Functional connectivity: the principal-component analysis of large (PET) data sets. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism, 13(1), 5-14. https://doi.org/10.1038/jcbfm.1993.4
Greicius, M. D., Supekar, K., Menon, V. & Dougherty, R. F. (2009). Resting-state functional connectivity reflects structural connectivity in the default mode network. Cerebral cortex, 19(1), 72-78. https://doi.org/10.1093/cercor/bhn059
Hartladge, L. & Long, C. (2009). Development of Neuropsychology as a Professional Psychological Specialty: History, Training, and Credentialing. En C. Reynolds y E. Fletcher-Janzen (edits.), Handbook of Clinical Child Neuropsychology. Springer.
Hayempour, B. J. (2013). Psychosurgery: Treating neurobiological disorders with neurosurgical intervention. Therapeutic Advances in Neurological Disorders, 1(1), 115.
Hoffman, K. L., Gothard, K. M., Schmid, M. C. & Logothetis, N. K. (2007). Facial-expression and gaze-selective responses in the monkey amygdala. Current biology, 17(9), 766-772.
Human Brain Project (2013). Recuperado de http://www.humanbrain- project.eu
Jones, A., Artikis, A. & Pitt, J. (2013). The design of intelligent socio-technical systems. Artificial Intelligence Review, 39(1), 5-20. https://doi.org/10.1007/s10462-012-9387-2
Kelly, C. & Castellanos, F. X. (2014). Strengthening Connections: Functional Connectivity and Brain Plasticity. Neuropsychology Review, 24(1), 63-76. https://doi.org/10.1007/s11065-014-9252-y
Klein, E. (2017). Neuromodulation ethics: preparing for brain-computer interface medicine. Neuroethics: Anticipating the future, 123-143.
Lowe, M. J., Dzemidzic, M., Lurito, J. T., Mathews, V. P. & Phillips, M. D. (2000). Correlations in low-frequency BOLD fluctuations reflect cortico-cortical connections. Neuroimage, 12(5), 582-587. https://doi.org/10.1006/nimg.2000.0654
Markram, H. (2006). The blue brain project. Nature Reviews Neuroscience, 7(2), 153-160.
Martínez-López, F. J. & Casillas, J. (2013). Artificial intelligence-based systems applied in industrial marketing: An historical overview, current and future insights. Industrial Marketing Management, 42(4), 489-495. https://doi.org/10.1016/j.indmarman.2013.03.001
Mayberg, H. S., Lozano, A. M., Voon, V., McNeely, H. E., Seminowicz, D., Hamani, C., ... & Kennedy, S. H. (2005). Deep brain stimulation for treatment-resistant depression. Neuron, 45(5), 651-660.
McLean, G. & Osei-Frimpong, K. (2019). Hey Alexa… examine the variables influencing the use of artificial intelligent in-home voice assistants. Computers in Human Behavior, 99, 28-37. https://doi.org/10.1016/j.chb.2019.05.009
Monti, M. M., Vanhaudenhuyse, A., Coleman, M. R., Boly, M., Pickard, J. D., Tshibanda L., … & Laureys, S. (2010). Willful modulation of brain activity in disorders of consciousness. New England Journal of Medicine, 362(7), 579-589.
Owen, A. M., Coleman, M. R., Boly, M., Davis, M. H., Laureys, S. & Pickard, J. D. (2006). Detecting awareness in the vegetative state. Science, 313(5792), 1402-1402.
Perera, C., Zaslavsky, A., Christen, P. & Georgakopoulos, D. (2013). Context Aware Computing for The Internet of Things: A Survey. IEEE Communications Surveys and Tutorials. https://doi.org/10.1109/SURV.2013.042313.00197
Rabadán, A. T. (2019). Horizonte de la inteligencia artificial y neurociencias. Acerca de robots, androides y cyborgs. MEDICINA (Buenos Aires), 79(5), 397-400.
Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A. & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676-682. https://doi.org/10.1073/pnas.98.2.676
Reardon, S. (2016). Faster higher stronger: the Cybathlon is a cyborg Olympics that will help disabled people to navigate the most difficult course of all: the everyday world. Nature, 536(7614), 20-23.
Rijsdijk, S. A. & Hultink, E. J. (2009). How Today’s Consumers Perceive Tomorrow’s Smart Products. Journal of Product Innovation Management, 26(1), 24-42. https://doi.org/10.1111/j.1540-5885.2009.00332.x
Rubinov, M. & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. NeuroImage, 52(3), 1059-1069. https://doi.org/10.1016/j.neuroimage.2009.10.003
Salvador, R., Suckling, J., Coleman, M. R., Pickard, J. D., Menon, D. & Bullmore, E. (2005). Neurophysiological architecture of functional magnetic resonance images of human brain. Cerebral Cortex, 15(9), 1332-1342. https://doi.org/10.1093/cercor/bhi016
Schermer, M. (2013). Health, happiness and human enhancement-dealing with unexpected effects of deep brain stimulation. Neuroethics, 6(3), 435-445.
Service, R. F. (2013). The Cyborg Era Begins. Science, 340, 1162-1165.
Spreng, R. N. & Andrews-Hanna, J. R. (2015). The default network and social cognition. Brain mapping: An encyclopedic reference, 1316, 165-169.
Turing, A. M. (1950). Computing machinery and intelligence. Mind, 49, 433-460.
Trappenberg, T. P. (2002). Fundamentals of computational neuroscience. Oxford University Press.
Van den Heuvel, M. P., Mandl, R. C. & Hulshoff Pol, H. E. (2008). Normalized group clustering of resting-state fMRI data. PLoS ONE, 3(4), e2001. https://doi.org/10.1371/journal.pone.0002001
Van den Heuvel, M. P. & Sporns, O. (2013). Network hubs in the human brain. Trends in cognitive sciences, 17(12), 683-696.
Wardrope, A. (2014). Authenticity and autonomy in deep-brain stimulation. Journal of medical ethics, 40(8), 563-566.
Wilson, L. R., Vatansever, D., Annus, T., Williams, G. B., Hong, Y. T., Fryer, T. D., Nestor, P. J., Holland, A. J. & Zaman, S. H. (2019). Differential effects of Down’s syndrome and Alzheimer’s neuropathology on default mode connectivity. Human Brain Mapping, 40(15), 4551-4563. https://doi.org/10.1002/hbm.24720
Wittes, B. & Chong, J. (2014). Our cyborg future: Law and policy implications. Center for Technology Innovation at Brookings.
Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G. & Vaughan, T. M. (2002). Brain-computer interfaces for communication and control. Clinical neurophysiology, 113(6), 767-791.
Wolpaw, J. & Wolpaw, E. W. (Edits.). (2012). Brain-computer interfaces: principles and practice. OUP USA.
--El modelo animal como una herramienta útil para el estudio del estrés--
Abramson, L. Y. & Seligman, M. E. P. (1977). Modelling psychopathology in the laboratory: History and rationale. En J. D. Maser y M. E. P. Seligman (edits.), Psychopathology: Animal Models (pp. 1-26). Freeman.
Aréchiga, H. (2000). Conceptos homeostasis. UNAM.
Barré-Sinoussi, F., & Montagutelli, X. (2015). Animal models are essential to biological research: issues and perspectives. Future science OA, 1(4) https://doi.org/10.4155/fso.15.63.Beach, F. A., Conovitz, M. W., Steinberg, F., & Goldstein, A. C. (1956). Experimental inhibition and restoration of mating behavior in male rats. The Journal of genetic psychology, 89(2), 165-181. https://doi.org/10.1080/00221325.1956.10534212
Bohus, B. (2000). Avoidance. En G. Fink (edit.), Encyclopedia of Stress, vol. 2. (pp. 291-294). Academic Press.
Celis, C. A., Martínez, D. P. & Conde, C. A. (2010). La primera entrada en el laberinto en cruz elevado como predictor del nivel de ansiedad. Primera entrada como predictor de ansiedad. Revista de la Universidad Industrial de Santander. Salud, 42(3), 220-228. https://www.redalyc.org/articulo.oa?id=343835700005
Chrousos, G. P. & Gold, P. W. (1992). The concepts of stress system disorders: overview of behavioral and physical homeostasis. Journal of American Medical Association, 267, 1244-1252. doi:10.1001/jama.1992.03480090092034
Dorn, L. D. & Chrousos, G. P. (1993). The endocrinology of stress and stress system disorders in adolescence. Endocrinology & Metabolism Clinics of North America, 22, 685-700. https://doi.org/10.1016/S0889-8529(18)30158-0
Duval, F., González, F. & Rabia, H. (2010). Neurobiología del estrés. Revista chilena de neuropsiquiatría, 48, 307-318. http://dx.doi.org/10.4067/S0717-92272010000500006
Ferdman, N., Murmu, R. P., Bock, J., Braun, K. & Leshem, M. (2007). Weaning age, social isolation, and gender, interact to determine adult explorative and social behavior, and dendritic and spine morphology in prefrontal cortex of rats. Behavioural brain research, 180(2), 174-182. https://doi.org/10.1016/j.bbr.2007.03.011
González-Franco, D. A., Ramírez-Amaya, V., Joseph-Bravo, P., Prado-Alcalá, R. A. & Quirarte, G. L. (2017). Differential Arc protein expression in dorsal and ventral striatum after moderate and intense inhibitory avoidance training. Neurobiology of Learning and Memory, 140, 17-26. https://doi.org/10.1016/j.nlm.2017.02.001
Hinde, R. A. (1976). The use of differences and similarities in comparative psychopathology. En G. Serban y A. Kling (edits.), Animal Models in Human Psychobiology (pp. 187-202). Plenum Press.
Katz, R. J., Roth, K. A. & Carroll, B. J. (1981). Acute and chronic stress effects on open field activity in the rat: implications for a model of depression. Neuroscience & Biobehavioral Reviews, 5(2), 247-251. https://doi.org/10.1016/0149-7634(81)90005-1
Laborda, M. A. (2009). Modelos animales en psicopatología experimental: miedo, tolerancia a las drogas y condicionamiento. Revista de Psicología, 18(2). https://doi.org/10.5354/0719-0581.2009.17122
Left, M. J., Roatch, J. F. & Bunney, W. E. (1970). Environmental factors preceding the onset of severe depressions. Psychiatry, 33, 293-311. https://doi.org/10.1080/00332747.1970.11023630
Logan, C.A. (2005). The legacy of Adolf Meyer’s comparative approach: Worcester rats and the strange birth of the animal model. Integrative Physiological & Behavioral Science, 40(4), 169-181. https://link.springer.com/article/10.1007/BF02915214
Louvart, H., Maccari, S., Ducrocq, F., Thomas, P. & Darnaudéry, M. (2005). Long-term behavioural alterations in female rats after a single intense footshock followed by situational reminders. Psychoneuroendocrinology, 30, 316-324. https://doi.org/10.1016/j.psyneuen.2004.09.003
Maier, S. F. (2001). Exposure to the stressor environment prevents the temporal dissipation of behavioral depression/learned helplessness. Biological Psychiatry, 49, 763-773. https://doi.org/10.1016/S0006-3223(00)01095-7
McCarty, R. (2016). The fight-or-flight response: A cornerstone of stress research. In Stress: Concepts, cognition, emotion, and behavior (pp. 33-37). Academic Press. https://doi.org/10.1016/B978-0-12-800951-2.00004-2
McKinney, W. T. & Bunney, W. E. (1969). Animal model of depression: Review of evidence and implications for research. Archives of General Psychiatry, 2, 240-248. https://doi.org/10.1001/archpsyc.1969.01740200112015
Menéndez-Patterson, A., Flores-Lozano, J., Fernández, S. y Marín, B. (1978). Stress and sexual behavior in male rats. Physiology & Behavior, 24, 403-406.
Moss, F. A. (1924). Study of animal drives. Journal of Experimental Psychology, 3, 165-185. https://doi.org/10.1037/h0070966
Mowrer, O. H. (1951). Two-factor learning theory: summary and comment. Psychological Review, 58(5), 350-354. https://doi.org/10.1037/h0058956
Normas Oficiales Mexicanas (1999). Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. NOM-062-zOO-1999.
Overmier, J. B. (2007). La investigación básica con animales fortalece la ciencia y práctica de la psicología. Interdiciplinaria, 24, 211-228. https://www.redalyc.org/pdf/180/18024204.pdf
Pawlyk, A. C., Jha, S. K., Brennan, F. X., Morrison, A. R. & Ross, R. J. (2005). A rodent model of sleep disturbances in posttraumatic stress disorder: the role of context after fear conditioning. Biological psychiatry, 57, 268-277. https://doi.org/10.1016/j.biopsych.2004.11.008
Pellow, S. & File, S. E., (1986). Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plusmaze: A novel test of anxiety in the rat. Pharmacology Biochemistry and Behavior, 24, 525-529. https://doi.org/10.1016/0091-3057(86)90552-6
Pohorecky, L. A. (2010). Acute novel stressors modify ethanol intake of psychosocially stressed rats. Pharmacology Biochemistry and Behavior, 95(4), 390-400.
Prut, L. & Belzung, C. (2003). The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. European journal of pharmacology, 463(1-3), 3-33. https://doi.org/10.1016/S0014-2999(03)01272-X
Pynoos, R. S., Ritzmann, R. F., Steinberg, A. M., Goenjian, A. & Prisecaru, I. (1996). A behavioral animal model of posttraumatic stress disorder featuring repeated exposure to situational reminders. Biological Psychiatry, 39(2), 129-134. https://doi.org/10.1016/0006-3223(95)00088-7
Reppucci, C. J., Kuthyar, M. & Petrovich, G. D. (2013). Contextual fear cues inhibit eating in food-deprived male and female rats. Appetite, 69, 186-195. https://doi.org/10.1016/j.appet.2013.06.004
Retana-Márquez, S., Bonilla-Jaime, H., Vázquez-Palacios, J., Martínez-García, R. & Velázquez-Moctezuma, J. (2003). Changes in masculine sexual behavior, corticosterone and testosterone in response to acute and chronic stress in male rats. Hormones and Behavior, 44, 327-337. https://doi.org/10.1016/j.yhbeh.2003.04.001
Retana-Márquez, S., Domínguez Salazar, E. & Velázquez-Moctezuma, J. (1996). Effect of acute and chronic stress on masculine sexual behavior in the rat. Psychoneuroendocrinology, 21, 39-50. https://doi.org/10.1016/0306-4530(95)00029-1
Rodgers, R. J. & Dalvi, A. (1997). Anxiety, defence and the elevated plus-maze. Neuroscience & Biobehavioral Reviews, 21(6), 801-810. https://doi.org/10.1016/S0149-7634(96)00058-9
Royce, J. R. (1977). On the construct validity of open field measures. Psychological Bulletin, 84, 1098-1106. https://doi.org/10.1037/0033-2909.84.6.1098
Russell, R. R., (1964). Extrapolation from animals to man. En H. Steinberg (edit.), Animal Behaviour and Drug Action (pp. 410-418). Churchill.
Sáenz, J. C. B., Villagra, O. R., & Trías, J. F. (2006). Factor analysis of forced swimming test, sucrose preference test and open field test on enriched, social and isolated reared rats. Behavioural Brain Research, 169(1), 57-65. https://doi.org/10.1016/j.bbr.2005.12.001
Schöner, J., Heinz, A., Endres, M., Gertz, K. & Kronenberg, G. (2017). Post‐traumatic stress disorder and beyond: an overview of rodent stress models. Journal of cellular and molecular medicine, 21(10), 2248-2256. https://doi.org/10.1111/jcmm.13161
Schuler, K. L., Ruggero, C. J., Goldstein, B. L., Perlman, G., Klein, D. N. & Kotov, R. (2017). Diurnal cortisol interacts with stressful events to prospectively predict depressive symptoms in adolescent girls. Journal of Adolescent Health, 1-6. https://doi.org/10.1016/j.jadohealth.2017.06.005
Schwarting, R. K. W. & Borta, A. (2005). Analysis of behavioral asymmetries in the elevated plus-maze and in the T-maze. Journal of Neuroscience Methods, 14, 251-260. https://doi.org/10.1016/j.jneumeth.2004.06.013
Selye, H. (1955). Stress and disease. The laryngoscope, 65, 500-514. https://www.jstor.org/stable/1749664
Stein, L. (1962). New methods for evaluating stimulantyand antidepressants. En J. H. Nodine & J. H. Moyer (edits.), The First Hahnemann Symposium on Psychosomatic Medicine (pp. 297-301). Lea and Fibiger.
Stone, C. P., Barker, R. G. & Tomilin, M. I. (1935). Sexual drive in potent and impotent male rats as measured by the Columbia obstruction apparatus. The Pedagogical Seminary and Journal of Genetic Psychology, 47, 33-48. https://doi.org/10.1080/08856559.1935.9943883
Stratakis, C. A. & Chrousos, G. P. (1995). Neuroendocrinology and pathophysiology of the stress system. Annal New York Academy of sciences, 771, 1-18. https://doi.org/10.1111/j.1749-6632.1995.tb44666.x
Treit, D., Menard, J. & Royan, C. (1993). Anxiogenic stimuli in the elevated plus-maze. Pharmacology Biochemistry and Behavior, 44, 463-469. https://doi.org/10.1016/0091-3057(93)90492-C
Van Dijken, H. H., Van der Heyden, J. A., Mos, J., Tilders, F. (1992). Inescapable footshocks induce progressive and long-lasting behavioural changes in male rats. Physiology & Behavior, 51, 787-794. https://doi.org/10.1016/0031-9384(92)90117-K
Walsh, R. N. & Cummins, R. A. (1976). The open field test-a critical review. Psychological Bulletin, 83, 482-504. https://doi.org/10.1037/0033-2909.83.3.482
Wang, L., & Hull, E. (1980). Tail pinch induces sexual behavior in olfactory bulbectomized male rats. Physiology & Behavior, 24, 211-215. https://doi.org/10.1016/0031-9384(80)90076-1
Warden, C. J. & Nissen, H. W. (1928). An experimental analysis of the obstruction method of measuring animal drives. Journal of Comparative Psychology, 8, 325. https://doi.org/10.1037/h0071919
Willner, P. (1986). Validation criteria for animal models of human mental disorders: learned helplessness as a paradigm case. Progress in Neuro-psychopharmacology and Biological Psychiatry, 10(6), 677-690. https://doi.org/10.1016/0278-5846(86)90051-5
Willner, P. (1990). Animal models of depression: an overview. Pharmacology & Therapeutics, 45, 425-455. https://doi.org/10.1016/0163-7258(90)90076-E
Yehuda, R., Southwick, S. M., Krystal, J. H . . . (1993). Enhanced suppression of cortisol following dexamethasone administration in posttraumatic stress disorder. The American Journal of Psychiatry, 150, 83-86. https://doi.org/10.1176/ajp.150.1.83
--Bases cerebrales y funcionales del procesamiento matemático--
Amercian Psychiatric Association (APA). (2003). Manual Diagnóstico y Estadístico de los Trastornos Mentales DSM-V. Masson.
Anderson, J. R., Mark, V. A. & Fincham, J. M. (2005). Tracing problem solving in real time: fMRI analysis of the subject-paced Tower of Hanoi. Journal of Cognitive Neuroscience, 17, 1261-1274.
Ashcraft, M. H. & Krause, J. A. (2007). Working memory, math performance, and math anxiety. Psychonomic Bulletin & Review, 14, 243-248.
Baddeley, A. (2000). The episodic buffer: a new component of working memory? Trends in CognitiveSciences, 4, 417-423.
Baddeley, A., Eysenck, M. W. & Anderson, M. C. (2009). Memory. Psychology Press.
Baddeley, A. D. & Hitch, G. J. (1974). Working memory. En G. A. Bower, Recent advances in learning and motivation (pp. 47-89). Academic Press.
Besnard, J., Allain, P., Aubin, G., Chauviré, V., Etcharry-Bouyx, F. & Le Gall, D. (2014). An integrative view of Luria’s perspective on arithmetic problem solving: The two sides of enviromental dependency. Journal of Clinical and Experimental Neuropsychology, 36(1), 88-109.
Bosch, M. A. (2012). Apuntes teóricos sobre el pensamiento matemático y multiplicativo en los primeros niveles. Educación Matemática en la Infancia, 1, 15-37.
Conway, A. R., Kane, M. J. & Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. TRENDS in Cognitive Sciences, 7, 547-552.
Curtis, C.E. & Lee, D. (2010). Beyond working memory: the role of persistent activity in decision making. TRENDS in CognitiveSciences, 14, 216-222.
Dehaene, S. & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1, 83-120.
Eger, E., Sterzer, P., Russ, M. O., Giraud, A. & Kleinschmidt, A. (2003). A supramodal number representation in human intraparietal cortex. Neuron, 37, 719-725.
Elliott, C. D. (1997). British Ability Scales (BAS II): Early years (2ª ed.). NFER-Nelson.
Fias, W. (2001). Two routes for the proccesing of verbal numbers: evidence from the SNARC effect. Psychological Research, (65), 250-259.
Fiuza, M. J. & Fernández M. P. (2014). Dificultades de aprendizaje y trastornos del desarrollo. Manual didáctico. Ediciones Pirámide.
Funahashi, S. (2006). Prefrontal cortex and working memory processes. Neuroscience, (139), 251-261.
Goel, V. & Dolan, R. J. (2003). Reciprocal neural response within lateral and ventral medial prefrontal cortex during hot and cold reasoning. NeuroImage, 20, 2314-2321.
Henschen, S. E. (1925). Clinical and anatomical contributions on brain pathology. Archives of Neurolog y and Psychiatry, 13, 226-249. https://doi.org/ 10.1001/archneurpsyc.1925.022000800 73006
Le Clec’H, G., Dehaene, S., Cohen, L., Mehler, J., Dupoux, E., Poline, J. B., Lehéricy, S., van de Moortele, P. F. & Le Bihan, D. (2000). Distinct cortical areas for names of numbers and body parts independent of language and imput modality. NeuroImage, 12, 381-391.
Leron, U. (2003). Origins of mathematical thinking: a synthesis. ResearchGate, 1-8.
Leron, U. (2004). Mathematical Thinking and Human Nature: Consonance and Conflict. PME, 28(3), 217-224.
Luria, A. R. (1979). El cerebro en acción. Fontanella.
Luria, A. R. (1986). Las funciones corticales superiores del hombre. Fontamara.
Mahmood, A., Othman, M. F. & Yusof, Y. M. (2012). A conceptual framework for mathematical ability analysis through the lens of cultural neuroscience. Procedia - Social and BehaviorSciences, 56, 175-182.
Molina, M. (2006). Desarrollo del pensamiento relacional y comprensión del signo igual por alumnos de tercero de educación primaria. Universidad de la Rioja.
Molina, J., Guevara, M. A., Hernández, M., Hidalgo, R. M. & Cruz, M. A. (2019). EEG correlation during the solving of simple and complex logical-mathematical problems. Cognitive, Affective & Behavioral Neuroscience, 19, 1036-1046.
Mulligan, J. & Mitchelmore, M. (2009). Awareness of pattern and estructure in early mathematical development. Mathematics Education Research Journal, 21, 33-49.
Nunes, T., Bryant, P., Evans, D., Bell, D., Gardner, S. & Gardner, A. (2007). The crontribution of logical reasoning to the learning of mathematics in primary school. British Journal of Delevopmental Psychology, 25, 147-166.
Paulesu, E., Frith, C. D. & Frackowiak, R. S. (1993). The neural correlates of the verbal component of working memory. Nature, 362, 342-345.
Pérez, A. M., Poveda, P. & López, M. P. (2011). Dificultades de aprendizaje y trastornos del cálculo. En J. L. Castejón y L. Navas (edits.), Dificultades y trastornos del aprendizaje y del desarrollo en infantil y primaria. ECU.
Piazza, M., Mechelli, A., Butterworth, B. & Price, C. J. (2002). Are subitizing and counting implemented as separate of functionally overlapping processes? NeuroImage, 15, 435-446.
Pickering, S. & Gathercole, S. (2001). Working Memory Test Battery for Children (WMTB-C) manual. The Psychological Corporation.
Prabhakaran, V., Narayanan, K., Zhao, Z. & Gabrieli, J. D. (2000). Integration of diverse information in working memory within the frontal lobe. Nature neuroscience, 3, 85-90.
Prabhakaran, V., Rypma, B. & Gabrieli, J. D. (2001). Neural substrates of mathematical reasoning: a functional magnetic resonance imaging study of neocortical activation during performance of the neccesary arithmetic operations test. Neuropsychology, 15, 115-127.
Prabhakaran, V., Smith, J. A., Desmond, J. E., Glover, G. H. & Gabrieli, J. D. (1997). Neural substrates of fluid reasoning: an fMRI study of neocortical activation during performance of the Raven’s Progressive Matrices Test. Cognitive Psychology, 33, 43-63.
Raven, J. C. & Court, J. H. (1993). Test de Matrices Progresivas. Manual. Paidós.
Rilling, J. K. & Sanfey, A. G. (2011). The neuro science of social decision-making. The Annual Review of Psychology, 62, 23-48.
Rosselli, M. & Ardila A. (2016). La rehabilitación de las acalculias y discalculias. Revista de Neuropsicología, Neuropsiquiatría y Neurociencias, 16(1), 189-211.
Rosselli, M., Matute, E. & Ardila, A. (2010). Neuropsicología del desarrollo infantil. Manual Moderno.
Rousell, M., Catherwood, D. & Edgar, G. (2012). An EEG case study of arithmetical reasoning by four individual varying in imagery and mathematical ability: Implications for mathematics educations. World Academy of Science, Engineering and Technology, 71, 1946-1948.
Simon, O., Kherif, F., Flandin, G., Poline, J., Rivière, D., Mangin, J., Le Bihan, D. & Dehaene, S. (2004). Automatized clustering and functional geometry of human parietofrontal networks for language, space, and number. NeuroImage, 23, 1192-1202.
Smith, E. E. & Jonides, J. (1997). Working memory: A view from neuroimaging. Cognitive Psychology, 33, 5-42.
Smith, E. E., Jonides, J. & Koeppe, R. A. (1996). Dissociation verbal and spatial working memory using PET. Cerebral Cortex, 6, 11-20.
Zago, L., Pesenti, M., Mellet, E., Crivello, F., Mazoyer, B. & Tzourio-Mazoyer, N. (2001). Neural correlates of simple an complex mental calculation. NeuroImage, 13, 314-327.
--Memoria y funciones ejecutivas durante el desarrollo--
Anderson, P. (2002). Assesment and development of executive function (EF) during childhood. Child neuropsychology, 8(2), 71-82. https://doi.org/10.1076/chin.8.2.71.8724
Anderson, V. A., Anderson, P., Northam, E., Jacobs, R., & Catroppa, C. (2001). Development of executive functions through late childhood and adolescence in an Australian sample. Developmental neuropsychology, 20(1), 385-406. https://doi.org/10.1207/S15326942DN2001_5
Anderson, P. & Doyle, L. (2008). Cognitive and educational deficits in children born extremely preterm. Seminars in Perinatology, 32, 51-58. https://doi.org/10.1053/j.semperi.2007.12.009
Anderson, V. (2010). Assessing Executive Functions in Children: Biological, Psychological and Developmental Considerations. Neuropsychological Rehabilitation: An International Journal, 8(3), 319-349. https://doi.org/doi: 10.1080/713755568
Arterberry, M. & Albright, E. (2020). Children’s Memory for temporal information: The roles of temporal language and executive function. The journal of Genetic Psychology. https://doi.org/10.1080/00221325.2020.1741503
Baddeley, A. (2000). The episodic buffer: a new component of working memory? Trends in Cognitive Sciences, 4, 417-423. https://doi.org/doi:10.1016/S1364-6613(00)01538-2
Baddeley, A. (2002). The psychology of memory. En A. Baddeley, A. Wilson y M. Kopelman (edits.), Handbook of memory disorders (pp. 3-16). John Wiley y Sons.
Baddeley, A. (2009). What’s it for? Why ask? Applied Cognitive Psychology, 23(8), 1045-1049. https://doi.org/10.1002/acp.1608
Baddeley, A. D. (1995). The psychology of memory. En A. D. Baddeley, B. A. Wilson y F. N. Watts (edits.), Handbook of Memory Disorders (pp. 3-25). John Wiley y Sons.
Bari, A. & Robbins, T. (2013). Inhibition and impulsivity: Behavioral and neural basis of response control. Progress in Neurobiology, 108, 44-79. https://doi.org/10.1016/j.pneurobio.2013.06.005
Bechara, A. & Damasio, A. (2005). The somatic marker hypothesis: A neural theory of economic decision. Games and economic behavior, 52, 336-372. https://doi.org/10.1016/j.geb.2004.06.010
Best, J. & Miller, P. (2010). A developmental perspective on Executive Function. Child Developmental, 81(6), 1641-1660. https://doi.org/10.1111/j.1467-8624.2010.01499.x.
Bisaz, R., Travaglia, A. & Alberini, C. M. (2014). The Neurobiological Bases of Memory Formation: From Physiological Conditions to Psychopathology. Psychopathology, 47(6), 347-356. https://doi.org/10.1159/000363702
Broche-Pérez, Y., Herrera, L. & Omar-Martínez, E. (2016). Bases neurales de la toma de decisiones. Neurología. https://doi.org/10.1016/j.nrl.2015.03.001
Bunge, S. & Zelazo, P. D. (2006). A Brain-Based account of the development of Rule use in childhood. Current directions in psychological science, 15(3), 118-121. https://doi.org/10.1111/j.0963-7214.2006.00419.x
Byrden, D. & Roesch, M. (2015). Executive control signals in orbitofrontal cortex during response inhibition. The journal of neuroscience, 35(9), 3903-3914. https://doi.org/10.1523/JNEUROSCI.3587-14.2015
Carrillo-Mora, P. (2010). Sistemas de memoria: reseña histórica, clasificación y conceptos actuales. Primera parte: Historia, taxonomía de la memoria, sistemas de memoria de largo plazo: la memoria semántica. Salud mental, 33(1), 85-93. Recuperado de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-33252010000100010&lng=es&tlng=es
Chadwick, M. J., Hassabis, D., Weiskopf, N. & Maguire, E. A. (2010). Decoding individual episodic memory traces in the human hippocampus. Current biology: CB, 20(6), 544-547. https://doi.org/10.1016/j.cub.2010.01.053
Cowan N. (2008). What are the differences between long-term, short-term, and working memory? Progress in brain research, 169, 323-338. https://doi.org/10.1016/S0079-6123(07)00020-9
Crone, E. A. & van der Molen, M. W. (2004). Developmental changes in real life decision making: performance on a gambling task previously shown to depend on the ventromedial prefrontal cortex. Developmental neuropsychology, 25(3), 251-279. https://doi.org/10.1207/s15326942dn2503_2
Crone, E., Donohue, S., Honomichl, R., Wedelken, C. & Bunge, S. (2006). Brain regions mediating flexible rule use during development. The journal of neuroscience, 26(43), 11239-11247 https://doi.org/10.1523/JNEUROSCI.2165-06.2006
Cuevas, K., Calkins, S. & Bell, M. (2016). To Stroop or not to Stroop: sex-related differences in brain-behavior associations during early childhood. Psychophysiology, 53, 30-40. https://doi.org/10.1111/psyp.12464
D’Esposito, M. & Chen, A. (2006). Neural mechanisms of prefrontal cortical function: implications for cognitive rehabilitation. Progress in Brain Research, 157, 123-139. https://doi.org/10.1016/S0079-6123(06)57008-6
Dajani, D. & Uddin, L. (2015). Demysfying cognitive flexibility: Implications for clinical and developmental neuroscience. Trends in neuroscience, 38(9), 571-578. https://doi.org/10.1016/j.tins.2015.07.003
Earhart, B. & Roberts, K. (2014). The role of executive function in children’s source monitoring with varying retrieval strategies. Frontiers in Psychology, 5, 1-12. https://doi.org/10.3389/fpsyg.2014.00405
Fleming, S.& Lau, H. (2014). How to measure metacognition. Frontiers in human neuroscience, 8, 1-9. https://doi.org/10.3389/fnhum.2014.00443
Flores-Lázaro, J., Castillo-Preciado, R. & Jiménez-Miramonte, N. (2014). Desarrollo de funciones ejecutivas, de la niñez a la juventud. Anales de Psicología, 30(12), 463-473. https://doi.org/10.6018/analesps.30.2.155471
Fuster, J. (2002). Frontal lobe and cognitive development. Journal of neurocytology, 31, 373-385. https://doi.org/10.1023/A:1024190429920
Fuster, J. (2008). Executive function. En The prefrontal cortex. Elsevier.
Gilmore, J. H., Shi, F., Woolson, S. L., Knickmeyer, R. C., Short, S. J., Lin, W., Zhu, H., Hamer, R. M., Styner, M. & Shen, D. (2012). Longitudinal development of cortical and subcortical gray matter from birth to 2 years. Cerebral cortex, 22(11), 2478-2485. https://doi.org/10.1093/cercor/bhr327
Grainger, C., Williams, D. & Lind, S. (2014). Metacognition, metamemory and mindreading in high-functioning adults with autism spectrum disorder. Journal of Abnormal Psychology,
Descargas
Publicado
Categorías
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.